Mostrando entradas con la etiqueta valor económico. Mostrar todas las entradas
Mostrando entradas con la etiqueta valor económico. Mostrar todas las entradas

lunes, 8 de julio de 2019

¿Cuánto valen tus Me Gusta?


El precio de un Me Gusta

¿Cuánto valen tus datos?
Por Hanna Kozlowska | Quartz

La riqueza de hoy está en los datos. Es así como empresas relativamente jóvenes como Facebook o Google se han convertido en una de las más grandes y rentables del mundo. Es el combustible que impulsa el negocio en innumerables industrias lo que les permite tomar decisiones comerciales informadas. Y a medida que los legisladores centran su atención en cómo se gestionan los datos de las personas, surge una pregunta central: ¿cuánto valen los datos de los consumidores y cómo deberían las empresas que se benefician de esa información compartir la inmensa riqueza que nuestros datos les han proporcionado?

Mientras que los consumidores utilizan servicios como Instagram o YouTube aparentemente de forma gratuita, en realidad están pagándolos al proporcionar grandes cantidades de sus datos personales (ya menudo confidenciales) a las compañías de tecnología que los administran. En efecto, los consumidores se benefician de lo que también es un sistema de vigilancia masiva que los espía y enriquece a otros. Y esas empresas a menudo no logran salvaguardar los datos que los usuarios les proporcionan. Esto puede llevar a infracciones masivas de datos, como la cantidad de miles de millones de personas expuestas por los hackeos de Yahoo Mail, y los datos que se comparten con terceros, sin el consentimiento de los usuarios, como ocurrió en el escándalo de Cambridge Analytica en Facebook. En 2018, Facebook generó $ 55 mil millones en ingresos por publicidad, mientras que Google registró más de $ 116 mil millones en el mismo período.

Mark Warner, un senador de Virginia, y Josh Hawley, un senador de Missouri, presentaron un proyecto de ley el 24 de junio que obligaría a las empresas de redes sociales a revelar qué datos recopilan de los consumidores y cómo se benefician de ellos, algo que históricamente han sido. reacios a hacer. Obligaría a la Comisión de Bolsa y Valores de EE. UU. (SEC, por sus siglas en inglés) a encontrar una manera de calcular el valor de los datos del consumidor para las compañías cuyos servicios tienen más de 100 millones de usuarios, y determinar si las compañías estaban involucradas en algún comportamiento anticompetitivo.

"Se ha hecho antes", le dijo a Quartz Rachel Cohen, directora de comunicaciones de la oficina de Warner. Señaló que las personas argumentaron que usted no podría poner un valor en las comunicaciones inalámbricas y asignar un valor al espectro inalámbrico, pero en última instancia, se hizo. "La visión sería hacer algo similar".

El proyecto de ley en sí no quiere que las empresas paguen a los usuarios por sus datos, pero otras propuestas que se están considerando en los Estados Unidos están considerando un enfoque llamado dividendo de datos, que de una u otra manera compensaría a los consumidores.

El gobernador de California, Gavin Newsom, propuso un dividendo de datos, hablando explícitamente de "compartir la riqueza" creada a partir de datos de consumidores y legisladores en el estado también están explorando el tema. Los esfuerzos todavía están en las primeras etapas.

"Cada uno de nosotros estamos regalando una gran cantidad de datos, y por lo tanto valor, y, por lo tanto, encontrar una manera de asegurarnos de que el cliente tenga su parte del pastel parece bastante importante en esta etapa", Chris Hansen, miembro de la Cámara de Representantes de Colorado Quien también está explorando las políticas de datos del consumidor, dijo a Quartz. Su visión permitiría a los consumidores retener el control y la propiedad de los datos, permitiendo que el consumidor los administre o los venda como les plazca, de compañías tecnológicas o de otro tipo. Mencionó las tiendas de comestibles y los clubes de lealtad de minoristas que recopilan datos sobre todo lo que les compra. "El consumidor en este momento no tiene ningún acceso o propiedad de esos datos, y estas empresas ganan una enorme cantidad de dinero", dijo Hansen. Y ese es solo un ejemplo: Hansen agregó que es importante implementar tales soluciones en toda la economía.

¿Cómo se calcula el valor de los datos de usuario?

El proyecto de ley del Senado de EE. UU. tampoco sugiere un método para calcular el valor de los datos, sino que deja que la SEC lo descubra. Cohen le dijo a Quartz que probablemente deberán desarrollarse múltiples cálculos, considerando que las compañías en diferentes sectores recopilan diferentes tipos de datos. Sin embargo, en los últimos años se han planteado varias soluciones para establecer ese valor y redistribuirlo.

Una propuesta es una solución de impuestos simple, como Chris Hughes, el cofundador de Facebook y el nuevo crítico de la compañía descrito el año pasado. Argumentó que un impuesto del 5% a las empresas que usan datos de consumidores, ya sean un gigante de Silicon Valley, un banco o un minorista, podría generar al menos $ 100 mil millones por año. Al utilizar el impuesto para financiar un dividendo de datos, cada adulto estadounidense recibiría un cheque por aproximadamente $ 400 por año. Comparó su idea con la forma en que los ingresos del petróleo extraído en Alaska se distribuyen a los ciudadanos del estado, que ascienden a unos $ 1,500 por persona por año. "A diferencia del petróleo, esta información no es un recurso agotable, lo que permite al fondo desembolsar los ingresos totales cada año", escribió Hughes, y señaló que la cantidad del cheque podría aumentar con el tiempo.

Otra idea es basar el cálculo de los datos en las métricas que brindan las propias empresas, como tomar parte del ingreso promedio por usuario (ARPU), que para los usuarios de Facebook de EE. UU., fue de $ 30 en el último trimestre, o aproximadamente $ 7.50 por mes. Recode calculó recientemente que si simplemente divide todos los ingresos de publicidad digital en los EE. UU. por la población adulta, una Internet sin publicidad costaría a cada adulto de los EE. UU. aproximadamente $ 35 por mes. Eso es menos que el costo de muchos servicios de transmisión de TV en vivo.

Los economistas también han considerado la cantidad de dinero que la gente podría haber hecho si no estuvieran consumiendo medios basados ​​en anuncios, por lo que se desplazan por Facebook o leen las noticias, en lugar de trabajar. Un cálculo aproximado estimó que este método manejaría aproximadamente $ 6,600 por usuario por año, por lo que aproximadamente $ 550 por mes por persona por persona. Aproximadamente la mitad de los usuarios de Internet encuestados por los economistas en 2017 también han dicho que renunciarían a servicios como Facebook por alrededor de $ 40 por mes.

Algunas empresas se están adelantando a cualquier legislación potencial. UBDI (Universal Basic Data Income), una empresa de intercambio de datos, tiene como objetivo permitir que los usuarios se beneficien de la venta de información a empresas o investigadores a partir de sus datos agregados. UBDI actualmente paga a los usuarios con puntos que se transferirán a la moneda digital en el futuro, dice su sitio web. Shane Green, CEO de UBDI, dice que ha estado involucrado en conversaciones con el Senado sobre el proyecto de ley de Warner y Hawley, y que prefiere lo que considera un método de cálculo más simple para el valor de los datos del consumidor. Su idea es analizar el ARPU de una empresa, así como el precio de sus acciones, que según él representa lo que el mercado considera el valor de los datos del consumidor.

"No son solo los ingresos que [las empresas como Facebook] obtuvieron este año, sino también el espectacular éxito que han tenido en lograr que los inversionistas y Wall Street comprendan el valor de ese tipo de propiedad con el tiempo y los nuevos tipos de productos que pueden Crear, y los nuevos tipos de objetivos que pueden hacer ", Green le dijo a Quartz.

Cómo pagarían realmente las empresas a sus usuarios

Glen Weyl, un economista que trabaja con legisladores en múltiples California, Colorado, Canadá y la UE, ha ideado un enfoque amplio y sistémico para pagar a los consumidores por sus datos, utilizando intermediarios. Según su idea, descrita en Harvard Business Review (paywall), habría actores independientes a los que llama "mediadores de datos individuales" (MIDS) que pueden ser comparados más estrechamente con los sindicatos. "Ayudarían a las personas a negociar el valor de sus datos, en lugar de tener todos los protocolos técnicos determinados", dijo.

Weyl también señaló que debe haber una distinción entre dos tipos de datos. Si bien podría ser relativamente sencillo calcular la efectividad de los anuncios (lo que hacen las propias empresas), el problema se vuelve más complejo cuando se habla de datos que se utilizan para entrenar modelos de aprendizaje automático.

Weyl apuntó a Quartz al investigador en ciencias de la computación de Stanford James Zou, quien describió su método para atribuir valor a los datos de aprendizaje automático en un trabajo de investigación. Zou usa un concepto establecido en la teoría de juegos económicos llamado el valor de Shapley, que esencialmente calcula el peso de la contribución de todos a un resultado para dividir de manera justa la bonificación que se recibe al final. Zou y su colega, Amirata Ghorbani, extendieron este concepto a los datos; por lo tanto, si se usan dos conjuntos de datos para entrenar un modelo de aprendizaje automático, el valor de Shapley ayuda a calcular cuánto contribuyó cada uno de estos conjuntos de datos al rendimiento final del modelo de aprendizaje automático. El modelo permite ingresar cantidades masivas de datos. Sin embargo, es solo una idea inicial, y Zou dice que se necesita más investigación para que sea útil en situaciones del mundo real.

Entonces, ¿cuándo son los datos de una persona más valiosos que los de otra persona? Así es como Zou lo explica: "Si estoy en Facebook y hay muchas otras personas que son muy similares a mí en Facebook, entonces mis datos no son tan valiosos, porque hay muchas otras personas que podrían ser sustitutos". se trata de cuán únicos son sus datos y de si realmente compra algo de los anuncios que ve en línea.

Por supuesto, no todos están de acuerdo en que poner un precio a los datos del consumidor es un ejercicio valioso en absoluto, argumentando que las personas normales todavía estarían renunciando a su privacidad, incluso si son compensados ​​por ello.

"No es un buen negocio para los consumidores obtener un puñado de dólares de las empresas a cambio de que el capitalismo de vigilancia permanezca sin control", escribió Electronic Frontier Foundation, un grupo de defensa digital, en febrero, argumentando que la protección de la privacidad debería ser la primera prioridad de los legisladores. .

miércoles, 17 de mayo de 2017

El valor económico del efecto de red: Valuación de empresas de redes sociales





Aquí es cuánto valen Facebook, Snapchat y otras redes sociales importantes


Justin Kerby | Social Media Today


Ha habido un gran movimiento en términos de valoración de las principales redes sociales en los últimos meses. Snapchat ha visto su precio de las acciones caer de nuevo a su valor de IPO, mientras que Facebook ha subido a máximos históricos. Mientras tanto, empresas como Pinterest todavía esperan pasar del ámbito privado al público, y LinkedIn y Tumblr se han instalado en sus nuevas excavaciones en Microsoft y Yahoo, respectivamente.

Con todos estos cambios que ocurren, pensamos que sería un buen momento para ir a donde algunas de las principales redes sociales en la actualidad se sientan en lo que respecta a su valoración. Cada una de las compañías listadas en la tabla siguiente se valora en función de su precio de venta más reciente, valoración o límite de mercado.






Aquí es cuánto valen Facebook, Snapchat y otras redes sociales importantes 

1. Facebook - $ 434 mil millones (límite de mercado, como de suscripción)

Facebook ha tenido una carrera asombrosa. Desde su salida a bolsa, han demostrado consistentemente aumentos en los ingresos publicitarios y en el crecimiento de los usuarios, dos métricas importantes para los inversores. También son el rey del tiempo pasado en la plataforma, con los usuarios que gastan más de 50 minutos por día en la red.

Una de las principales razones por las que Facebook ha sido capaz de mantenerse al día es sus actualizaciones constantes - han pasado a convertirse en una primera plataforma móvil y una primera plataforma de vídeo. Ambos cambios han hecho que la compañía sea extremadamente valiosa.

2. Snapchat - $ 18 mil millones (límite de mercado, como de suscripción)

Después de una gran patada en Wall Street, Snapchat recientemente regresó a la tierra. Sus ganancias del primer trimestre fueron pobres, por decir lo menos.

Dicho esto, muchas otras redes sociales han tenido pobres informes del primer trimestre ganando después de su IPO.




La compañía está perdiendo mucho dinero, $ 2,2 mil millones el último trimestre solo, para ser exacto. Además de eso, están poniendo menos énfasis en el crecimiento de los usuarios, y más en el compromiso. Es una estrategia diferente, y aunque no sea la equivocada, todavía no está infundiendo confianza en los inversionistas.

3. Pinterest - $ 11 mil millones (desde la última ronda de recaudación de fondos)

Mi predicción audaz de los medios sociales para 2017 era que Pinterest sería público. No parece que eso ocurra antes de fin de año, así que tal vez tenga que comer mis palabras.

Dicho esto, Pinterest ha contratado a un CFO, una posición que la compañía nunca ha tenido antes. Eso sería señal de que pueden estar tratando de conseguir sus libros en orden y buscar ir a público en algún momento en el futuro cercano.

4. Twitter - $ 13 mil millones (límite de mercado, valor de suscripción)

Twitter ha tenido sus propios desafíos con el crecimiento de los usuarios, que ha disminuido en los últimos años. Están haciendo una seria inversión en contenido de video en vivo, asociándose con grandes nombres como Bloomberg y la NBA. Sólo el tiempo dirá si la estrategia vale la pena.

5. LinkedIn - $ 26 mil millones (precio de venta a Microsoft)

Muchos especularon sobre si Microsoft estaba pagando demasiado por LinkedIn cuando compró la red social por 26.000 millones de dólares. Mientras que eso queda por determinar, una cosa es segura - LinkedIn ha hecho un gran trabajo de ampliar su plataforma de publicidad de tarde. Definitivamente debe mover la línea de fondo, y hacer que el precio de etiqueta parece más razonable.

6. YouTube - $ 90 mil millones (valoración aproximada de múltiples fuentes)

Esta es fácilmente la valoración más difícil de determinar en nuestra lista.

Cuando la compañía fue comprada por Google por $ 1.65 mil millones hace más de una década, algunos pensaron (como con la compra de LinkedIn de LinkedIn) que Google pagó en exceso. No podrían haber estado más equivocados.

Hoy en día, YouTube tiene ingresos de más de $ 12 mil millones por año, y con el aumento del vídeo en línea, no espere que ese número se contraiga en el corto plazo.

Es interesante observar las valoraciones fluctuantes de las principales plataformas sociales, y cómo crecen y se desarrollan con el tiempo. Como se puede ver, los medios de comunicación social es ahora una gran industria, y como tal, el enfoque en este crecimiento no es probable que muera en cualquier momento pronto.

martes, 12 de abril de 2016

El valor de las redes según Reed



La Ley de la Manada
David P. Reed - Harvard Business Review



La Internet es una red de redes, y su valor radica en las conexiones que hace posibles. Como gerentes y empresarios tratan de medir ese valor, que han pagado una gran cantidad de atención a dos tipos de redes. El más simple es el o uno-a-muchos de difusión de la red, a través de la cual un centro de transmisiones proveedor de información a un gran número de usuarios. Un ejemplo es el portal Web, que ofrece noticias y otros contenidos a muchos visitantes. Más complejo, y más valiosos, es el uno-a-uno o transaccional de la red, que conecta a los usuarios individuales con otros usuarios individuales para intercambiar información o realizar otras transacciones. Los ejemplos más comunes son el correo electrónico y la mensajería instantánea.

Pero hay un tercer tipo de red que, aunque menos entendido que los otros dos, es en realidad el más valioso de todos. Es la red de formación de grupo-muchos-a-muchos-o, lo que permite a los miembros de la red para formar y mantener grupos de comunicación. Ejemplos de grupos de formación de redes, o GFNs, incluyen las comunidades en línea, intercambio de negocio a negocio, y los carteles de comprador.

He estado estudiando GFNs durante los últimos cuatro años y han llegado a darse cuenta de que requieren una nueva forma de medir el valor de la red. De hecho, creo que las empresas que pueden aprovechar el poder de GFNs obtendrán las ventajas competitivas más fuertes que Internet tiene para ofrecer.

Las empresas que capitalizan en las redes de formación de grupo obtendrán la ventaja más fuerte que Internet tiene para ofrecer.

Las formas de medir el valor de las redes de transmisión y transaccionales están bastante bien establecidos. A medida que el número de usuarios en una transmisión en la red se eleva, su valor aumenta de forma lineal. Cada nuevo miembro añade la misma cantidad de valor, independientemente del tamaño de la red se convierte. En una red transaccional, el valor crece mucho más rápido. Debido a que cada nuevo miembro aumenta el número de conexiones posibles a disposición de todos los demás miembros, el valor de cada miembro sigue subiendo medida que se expande la red. Esta relación se recoge en la Ley de Metcalfe, que establece que el valor de una red de uno-a-uno crece en proporción al cuadrado del número de usuarios. Si el número de miembros de la red es igual a n, en otras palabras, el valor de una red de uno a muchos crece en proporción a n mientras que el valor de una red de uno-a-uno crece en proporción a n2.

Pero incluso la Ley de Metcalfe subestima el valor creado por una red de formación de grupo a medida que crece. Digamos que usted tiene un GFN con n miembros. Si se suman todos los posibles grupos de dos personas, grupos de tres personas, y así sucesivamente que podría formar esos miembros, el número de posibles grupos es igual a 2n. Así que el valor de un GFN aumenta de manera exponencial, en proporción a 2n. Yo llamo a esto la ley de Reed. Y sus implicaciones son profundas.

Considere la posibilidad de un negocio de la red de plataformas como America Online. Proporciona una mezcla de servicios basados ​​en la red a sus clientes. Una cosa que hace es contenido de difusión como informes meteorológicos y noticias. Dado que el contenido se sirve a un usuario a la vez, se crea valor proporcional al número de usuarios en la red. Otro de los servicios de AOL es la mensajería, un medio de uno-a-uno. Según la ley de Metcalfe, el valor de la mensajería crece proporcionalmente al cuadrado del número de usuarios. Por último, permite a los usuarios de AOL para formar grupos a través de mecanismos tales como salas de chat y juegos multijugador. De acuerdo con la Ley de Reed, el valor de tales GFNs crece exponencialmente. Así pues, estas redes llegan rápidamente a dominar el valor total creado por AOL (para una ilustración, véase el gráfico adjunto, "El valor relativo de los servicios de AOL"). No es de extrañar, ya que la pertenencia de AOL se ha expandido, una gran parte de la atención del usuario se ha desplazado de acceso a los contenidos y hacia las actividades de formación de grupo.

El más potente aplicación de la Ley de Reed puede estar en el espacio de negocio a negocio. Intercambios y las redes de negocios basados ​​en redes similares pueden ayudar a los clientes se unen para solicitar productos y servicios personalizados a los proveedores, y pueden ayudar a los proveedores organizan alianzas para crear nuevos productos y servicios. A medida que crecen estas redes, el valor que ofrecen a sus empresas miembros en magnificar grandemente, y las organizaciones o consorcios que operan ellos ganará cada vez mayor poder de mercado. Como indicaría Ley de Reed, las empresas más exitosas en Internet viajarán en paquetes.

viernes, 28 de noviembre de 2014

Uber tiene mayor valuación económica que Facebook

Uber está creciendo mucho más rápido que lo que lo hizo Facebook 

David Smith

 
Uber ha experimentado un crecimiento explosivo en los últimos tres años: Desde elevar 49.500.000 dólar en 2011, 258 millones dólares en 2013, y la friolera de $ 1.2 mil millones en junio, Uber ha hecho su servicio Viajes disponible en más de 200 ciudades en 45 países en todo el mundo. Ahora, la compañía está tratando de cerrar una nueva ronda de financiación que valorar a la compañía entre $ 35 millones y US $ 40 mil millones.

Pensamos que sería interesante comparar las nubes valoración de Uber a la de Facebook, otra empresa enormemente popular tecnología. Con base en datos de la empresa indicada en las cartas para nosotros por BI Inteligencia, Uber es considerablemente más adelante que Facebook era, al menos en cuanto a su valoración, en su tercer año de recaudación de fondos. Facebook alcanzó $ 35-40 mil millones de valoración de Uber en su séptimo año, dos años antes de su salida a bolsa en 2012.



Business Insider

martes, 2 de septiembre de 2014

El valor de las marcas

¿Para qué están las marcas? 

Las marcas son los activos más valiosos que muchas empresas poseen. Pero nadie está de acuerdo en lo mucho que vale la pena o por qué 

Valores de las marcas - The Economist

martes, 6 de agosto de 2013

martes, 30 de julio de 2013

El valor de una red: Diferentes perspectivas y observaciones

Value of a Network: Different Perspectives and Observations

Many times, a new person joining a network (social or financial) has an impact on the members already part of the network. This kind of impacts contribute to the increase or decrease in the value of the network. These impacts in turn decides the growth or decay of the network. In this paper, we will look into some examples of such networks in current time. We will discuss many different perspectives of the network value and many laws proposed to quantify them. There have been many questions raised on the validity of these laws. hence, we will look into the issue of validity of these laws. At the end, we will discuss the different interpretation of these laws and try to put them in right perspective.
1. Introduction
When we buy some goods/service or get into a social community, we will implicitly become a part of a network. For example, buying a set-top-box(STB) connection make you a part of all the consumers having the same set-top-box connection. Even though the structure of the network and the properties of the elements (here people) is not clearly known, the group is assumed to be connected due to the common service/good or relation. The growth of such network many times depends on the value of the network when new members join them. We will look into some of the known networks and try to observe the special behavior of the networks as they grow.
Maruti Cars: Maruti is an Indian car manufacturing company. It was founded in 1981. At the time Hindustan Motors, Fiat (as Premier Automobiles Limited) like companies were present in Indian car market and selling cars. But, Maruti started becoming popular day by day. As more and more people bought Maruti cars, more and more service stations were started. These were not always started by Maruti, but sometimes were just authorized by them. As the number of Maruti cars increased, it created the opportunity to establish new service stations (due to more number of cars) and also made spares cheap due to mass production. As more number of service stations were available and spares became cheaper, people inclined towards buying more Maruti cars. Hence, whenever a person buys a Maruti car, he gets the value for the money he has as the car. But, he will also get a complementary benefit of cheap and highly accessible service. This benefit is shared between all the Maruti car owners. Hence,
Buying a Maruti Car = A Car Worth the Money Spent + Cheaper Spares + Accessible Service
The Cheaper Spares + Accessible Service part contributors to gain for all the Maruti car owners. According to the statistics of March-2011, Maruti holds 48.74% of the Indian car market share!
Migration of People to USA: America was discovered in 1492. Then it was a land of indigenous tribes. Hence, initially life was very difficult for the people coming and settling over there. As the number of adventurous and visionary people started coming to USA, the life started getting better. At some point of time, it started becoming an attraction for people looking for greater opportunities. So, people with skills to exploit the opportunities started moving to America. Due to the skilled people, there began a faster development and created more opportunities. Thus, as the number of skilled people entering USA increased, the value of the USA as a society increased. It can be given as,
New Skilled Person Entering USA = The Person Getting Opportunities Worth the Value Spent to Enter + More Opportunities + Better Lifestyle
The More Opportunities + Better Lifestyle will be the gain for all the Americans due to one person. We observe that one person entering USA increases the value of the society in USA.
Road Networks in City (More Vehicles on the Road): Assume there is a road network in a city which has no vehicles. When the first vehicle starts using it, it will have no problems like overtaking, honking, traffic jam, accidents, parking etc. But, as the number of vehicles using the same road network increases, the earlier drivers start feeling it more problematic. They will start facing all the problems mentioned above. Even the travel time increases. The cost of travel also increases due to slow driving. In other terms, whenever a new car joins the same road network, even though car owner gets the comfort of traveling a new car, he decreases the speed at which the traffic moves in the city (increases the the travel time). He also increases the cost of the travel due to the slow drive. We can represent it as,
New Vehicle Joining the City Traffic = Comfort Worth the Value of the Car to Owner +Slower Traffic + More Travel Cost
Slower Traffic + More Travel Cost is the reduction in the overall traffic system due to increase in the number of vehicles on the road.
From all the examples above, we can observe a very dominant behavior of the networks. When a new elements(person, car etc.,) is added to the network, the elements adds extra benefit or cost to all the other elements of the network. So, generically we can express this as,
New Element Joining the Network = Value Equal to Expenditure Made to Join Network + Some Benefit/Cost to all the Members of the Network
There are many such example around us which show this kind of behavior. The following are the
  • People forming villages.
  • People buying more Nokia phone in early 2000s.
  • People buying Hero Honda vehicles in mid 90s.
  • Internet.
  • Arrival of IT Companies in Bangalore.
  • Plantations.
  • Electricity Consumption.
  • Mobile Network Congestion.
In the examples seen, we have to observe that, when a new member enters a network, the network might get benefited in some aspects and might incur cost in some other aspects. So, whenever a new member joins the network, we have to look into all the aspects and take the aggregated value add to understand whether the network is getting benefited or incurring cost as a whole. If the aggregated value add is positive, network made benefitand when the aggregated value add is negative, network incurred cost.
If the network gets benefited , in aggregate, from the addition of new member, then there will be higher motivation for the people inside the network to welcome more people and also there will be higher motivation for new members to join. However, if there is absolute cost incurred by the network members and the new member when the new member joins the network, then there will be negative motivation for non members to joining the network.
2. Value of a Network
The aggregated value add is the way in which a network gets its overall value. When a new member enters the network, in case of existence of benefit, the value of the network increases and in case if the cost is incurred, the value of the network decreases. This growth of value of the network indicates a lot of future trends. Hence, many people have tried to quantify the value of the network in different aspects. The following are few interesting laws trying to quantify the value of the network.
a) Metcalfe’s Law
Robert Metcalfe is the co-inventor of Ethernet. He wanted to explain people why they should buy more and more Ethernet card. Hence, he proposed a law which asserted that the value of the Ethernet network is proportional to the square of the number of Ethernet cards connect in it. Hence, though the cost of adding new element to the network increases linearly, the value of the network due to the addition of new element increases quadratically.
The intuition for value of the network is derived from the possible number of connections in the network. If we consider a directed network with n nodes, then the maximum number of connection possible in that network is n(n-1) (if we do not consider the self loops). This is in the order of n2. Hence, it is looks intuitive that the value of the network increases quadratically. Figure 2 gives more insight about the claims of Metcalfe’s law (the image taken from wikipedia).

Example to explain the intuition behind the network value claims by Metcalfe’s law. The value of the network here is the “maximum number of connection possible”.

This makes network gain more value due to the addition new network element. This looks beneficial to grow the network because, for such a growth, there will always be an n, for which:
  1. The value of network becomes greater than cost, and
  2.   For any value greater than n, value of network increases faster than the cost incurred, and cost starts becoming negligible.
  3. The network starts increasing its value in almost quadratic terms.
The diagrammatic representation to show that the quadratic value will always cross the linear value for some value "n". Then the linear value starts becoming negligible.
The diagrammatic representation to show that the quadratic value will always cross the linear value for some value “n”. Then the linear value starts becoming negligible.
The above figure shows this phenomenon in a graph. We can observe that once the number of elements in the network crosses  n, the value of the networks becomes positive (even if it is negative earlier due to the cost of adding new nodes). After this stage, as the network grows, the linearly growing overall cost starts becoming negligible compared to the quadratically growing value of the network.
The law was later formalized by George Gilder for all the networks in 1993. He claimed that this law is not only applicable to the device networks (like Ethernet), but is also applicable to networks with users in it (economic network, business network etc).
b) Reed’s 3rd Law
Metcalfe’s law became famous due to its intuitive quantification of the value of the network. In 2001, David P. Reed, an American computer scientist came up with a new law called Reed’s Law for quantifying the value of a network. He said that the Metcalfe’s law underestimates the value of the network. He claimed that the law is highly applicable for large scale networks like social networks (more on Reed’s law at:http://en.wikipedia.org/wiki/David_P._Reed , http://en.wikipedia.org/wiki/Reed’s_law ). The statement of Reed’s Law goes as follows:
As networks grow, value shifts: Content (whose value is proportional to size) yields to Transactions (whose value is proportional to the square of size), and eventually Affiliation (whose value is exponential in size)
In Reed’s law,
  • The meaning of the term content is the number of nodes.
  • The meaning of the term affiliation is the social and business relationship.
Reed’s law tells that when a network starts building, it will have value only because of its individual members, as there are not transactions between members and no affiliations too. But, later, the members of the network get into transactions. Because of the transactions, the value of the network becomes quadratic in nature(similar to Metcalfe’s Law). Due to the transactions, the members will come together and form different communities. The real value of the network becomes exponential due to formation of such of communities.
The intuitive proof of Reed’s Law goes like this. When members start transacting, in a nmember network, the maximum number of transaction each person can do is n-1. Hence, the total number of transactions in the network will be x (n-1), which is O(n2). Hence, Reed claims that the value of the network due to transactions is quadratic.
When the member start forming the communities, the maximum number of Group-Forming-Networks(GFC) people can form with other members is 2n – n – 1. A GFN is nothing but any community formed by the some members of the network. 2n is the cardinality of the power set of n members. We subtract n from with a naive assumption that there can not be single member communities. We subtract 1, as it represents the number of empty sets in the power set. 2n – n – 1 is in the order of O(2n). Hence, Reed claims that the value of the network due to the affiliations is exponential in nature.
c) Beckstrom’s Law
Beckstrom’s law was proposed by Rod Beckstrom in 2009. Beckstrom claims that this law can be used to evaluate any kind of network including electronic networks, social networks, supports networks and Internet. The laws states that:
The value of a network equals the net value added to each user’s transactions conducted through that network, summed over all users.
The Beckstrom’s law takes completely different look at the value getting added to the network. Instead of looking into structure and number of nodes as the input for calculating the value of the network, Beckstrom’s law looks at each transaction happening in the network (represented as an edge) as the input for calculating the value of the network. The law looks at the factor of “how valuable is the network for each user“. This is calculated by aggregating all the benefits a member gets due to the presence of the member in the network. This factor in aggregation over all the members is used to calculate the value of the complete network.
It is not that each transaction in the network adds value to the member. It is possible that due to presence of the network, the member might incur more cost. This cost is also taken care when the value of the transactions is calculated. Hence, if the member is incurring cost due to the presence of the network, the value of the network might reduce. This is a new way of looking at the value of network, which was not done by both Metcalfe’s law and Reed’s law.
To understand how value is derived from the network, let us look at an example. Assume that you wanted to buy an laptop. You visit the stores near by and understand that the minimum prize it is available for is Rs. 30000 and you decide to buy. Now, while browsing, you come across the same model of the laptop for Rs. 28000 on Flipkart. You also get to know that, they provide additional 3-years warranty free complimentary (which is worth Rs. 2000). Now, we know that by buy on-line, we will save Rs. 4000 in total. This is the value generated by us by the transaction. Similarly, the Flipkart will also gain in the transaction, say Rs.1000. Similarly, there might be many nodes in the network which will get value add. The value of the network will be the aggregate (sum) of all the gains.
Beckstrom’s law takes care of the temporal aspect of the network value. When a transaction adds value to the network, its value will not remain the same over time. As the time progresses, its values starts decaying. Hence, after some time, if there no transaction in the network then the network starts losing the value as time passes.
3. Review and Interpretation of Laws
Questioning the Validity of Metcalfe’s Law (Metcalfe’s Law is Wrong): There has been many criticism on the Metcalfe’s and Reed’s Laws. The first argument focuses on the the number of connections handled by each node in the network. The argument says that the Metcalfe’s and Reed’s Law can not be applied to quantify the value of networks involving people as the members. People have limit to the number of stable connections they can manage. Once the number of connections get saturated, the person can not get involved in any more connections. So, growth rate is not always quadratic and is restricted by the saturation of connection handling capability of people.
The other kind of argument talks about the nature of connection distribution in network. The claim is “the value of the network with  n member is of the order of n log(n)”. The basis for the claim lies in the assumption that the distribution of connections follows the Zipf’s law. Hence, the connection distribution for each member for all other members looks like 1, 11, … , 1n-1. It mean that if there is observation on the connection time of a member with other members, and if the maximum connection time is normalized to 1, then other connection times will look like 1, 1213, … , 1n-1So the value of the network contributed by one member is 1 + 12 + 1+ … + 1n-1.For infinitely big network this series converges to log(n). As there are n such member, the value of the network is n log(n).
Interpretations and Analysis of the Laws: As we saw these laws, and their criticisms, it was getting more and more evident that we are misunderstanding the laws in some conditions. We have intuitively understood that even though all these laws talk about the {value of the network}, the value is measured in different contexts for each of the laws. Hence, in this section, we will try to understand different context where these laws will be used and their different interpretations.
Interpretations of Metcalfe’s Law: Metcalfe’s law is used in the context, where we need to understand the value of the network in terms of number of connection. Here are some the observations.
  1. Metcalfe’s Law values the network in terms of the number of possible connections in the network. The number of possible connection is also an indication of number of possible transactions. Note that it is the upper bound of the network value. Hence, we should not misunderstand the the value of the network will always be at its maximum.
  2. Metcalfe’s Law is highly applicable to small network like LAN, where almost every machine is connected to every other machine. In such small networks, it may be possible that the maximum value is reached by such network.
  3. The law has the limitation when we try to apply this on network with people as the members. This is due to the saturation of the number of connections an individual member can handle. The law ignores the fact of probability of the connection between different members and hence ends up misleading for larger networks.
Interpretations of Reed’s Law: Reed’s law used in the context of understanding society value in the network. We interpret Reed’s law as below.
  1. Reed’s law talks about the value of the network being proportional to the exponent (2n) of the number of member. This means that, the value of the network found using the Reed’s law is the value in terms of the number of different groups that can be formed in the network.
  2.  The value of the network formed puts an upper bound on the actual value of the network. Even if the the value of the network may not be equal to the value proposed by Reed’s law, it can never cross it. Hence, Reed’s law defines the boundaries of the value of the network in its own context.
  3. The Reed’s law is applicable in the small networks which show the tendency of heterogeneous group formations. For example, in the a small apartment society, there will be different groups like sports club, music club, drama club, trekkers etc.,. There, the value of the network might be very near to the value proposed by Reed’s law. But, when the network size increases, then value of the network will not grow exponentially. The law ignores the fact of probability of the connection between different members and hence ends up missing this point.
Interpretations of Beckstrom’s Law: Beckstrom’s Law talks about the value of a network due to the transactions in the network.
  1.  The law rightly identifies the transactions between the members as the potential contributors to the network value.
  2. The law has a provision for network value to decay due to the increased cost in transactions. This makes sure that many other factors causing negative effect on the value of the networks are also considered.
  3.   The decay of the generated value over time tells that value of the network is temporal in nature. This is a new way of looking at the value of a network. Due to the temporal nature, the value of network starts decreasing when the number of transactions in the network stop. There will be threshold value of transaction value. If this transactions do not generate this threshold value, then the value of the network starts decreasing.
  4. This can not capture the value added only by the presence of a member in the network. For example, presence of a film start in a commercial good network might bring many other fans to the network. These fans may in turn add value to the network. But, the law does not work in that context.
We have to understand the contexts of the applicability of the laws to understand them better. Like Moor’s law, these laws are not immutable laws as well. They are laws which indicate tendencies but are not strict in nature.
4. Conclusion
It has been observed that many networks increase or decrease in their value due to the addition of new members. This phenomena can in turn be the reason for the growth or decay of a network. Due to this kind of importance, there have been many attempts to quantify the value of a network by many people. Metcalfe, Reed and Beckstrom came up with own laws to quantify the value of a network. They looked into different aspects of the networks and tried to quantify the value of the networks in those contexts. But, it has always been misunderstood that all of them proposed the value of for a network in the same context. Metcalfe and Reed have ignored some important factors like saturation of limit of connections for individual human beings while proposing the laws. These has become a reason for lot of controversies and criticisms. But, when we keep the contexts in the view, then these laws give us lot of important properties.
REFERENCES
  1. Hendlera, J and Golbeck, J. Metcalfe’s Law, Web 2.0, and the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web.
  2. Reed, D.P. The Law of the Pack. Harvard Business Review. 2001
  3. Odlyzko, A. and Tilly, B. A refutation of Metcalfe’s Law and a better estimate for the value of networks and network interconnections. Manuscript, March. 2005
  4. Briscoe, B. Odlyzko, A. and Tilly, Metcalfe’s Law is Wrong. IEEE Spectrum. July 2006
  5. Beckstrom, R. A New Model for Network Valuation. 2009

miércoles, 24 de julio de 2013

La ley de Metcalffe y la economía en red

e-business basics - Metcalfe's Law and the Networked Economy

One key determinant of the success of networks is the umber of users connected to the network. Originally proposed as a rule of thumb to explain the value of a telecommunications network;

Metcalfe's law states that the value of a telecommunications network is proportional to the square of the number of users of the system (n2). First formulated by Robert Metcalfe in regard to Ethernet, Metcalfe's law explains many of the network effects  of communication technologies and networks such as the Internet  and World Wide Web .

The law has often been illustrated using the example of fax machines: A single fax machine is useless, but the value of every fax machine increases with the total number of fax machines in the network, because the total number of people with whom each user may send and receive documents increases.


This diagram from Wikipedia shows how the number of possible connnections grows rapidly as more users adopt a network.
Others have suggested that the formula significantly underestimates the value of adding new users to a network and have refined Metcalfe’s Law. Nevertheless, it is the principle that is important, that on-line networks and communities derive more value, the more users they have.

This principle also helps to give an economic reason why there can be a benefit in one technology vendor or standard dominating a marketplace – because otherwise, the potential users can be split across multiple incompatible platforms.
Social networking and peer-to-peer systems such as eBay, Youtube and MSN derive considerable benefit from being more or less the de facto standard for their particular on-line service.

This represents a direct challenge to certain principles of economics with regard to monopoly; the benefits of users adopting one standard technology may far outweigh any disadvantages that may accrue from the monopoly power of the firm that controls the standard. In fact, these benefits might justify the existence of a natural monopoly.

Author: Steve Whiteley, January 2007

Tutor2u

lunes, 22 de julio de 2013

El valor de una red: Diferentes perspectivas y observaciones

Value of a Network: Different Perspectives and Observations

Many times, a new person joining a network (social or financial) has an impact on the members already part of the network. This kind of impacts contribute to the increase or decrease in the value of the network. These impacts in turn decides the growth or decay of the network. In this paper, we will look into some examples of such networks in current time. We will discuss many different perspectives of the network value and many laws proposed to quantify them. There have been many questions raised on the validity of these laws. hence, we will look into the issue of validity of these laws. At the end, we will discuss the different interpretation of these laws and try to put them in right perspective.
1. Introduction
When we buy some goods/service or get into a social community, we will implicitly become a part of a network. For example, buying a set-top-box(STB) connection make you a part of all the consumers having the same set-top-box connection. Even though the structure of the network and the properties of the elements (here people) is not clearly known, the group is assumed to be connected due to the common service/good or relation. The growth of such network many times depends on the value of the network when new members join them. We will look into some of the known networks and try to observe the special behavior of the networks as they grow.
Maruti Cars: Maruti is an Indian car manufacturing company. It was founded in 1981. At the time Hindustan Motors, Fiat (as Premier Automobiles Limited) like companies were present in Indian car market and selling cars. But, Maruti started becoming popular day by day. As more and more people bought Maruti cars, more and more service stations were started. These were not always started by Maruti, but sometimes were just authorized by them. As the number of Maruti cars increased, it created the opportunity to establish new service stations (due to more number of cars) and also made spares cheap due to mass production. As more number of service stations were available and spares became cheaper, people inclined towards buying more Maruti cars. Hence, whenever a person buys a Maruti car, he gets the value for the money he has as the car. But, he will also get a complementary benefit of cheap and highly accessible service. This benefit is shared between all the Maruti car owners. Hence,
Buying a Maruti Car = A Car Worth the Money Spent + Cheaper Spares + Accessible Service
The Cheaper Spares + Accessible Service part contributors to gain for all the Maruti car owners. According to the statistics of March-2011, Maruti holds 48.74% of the Indian car market share!
Migration of People to USA: America was discovered in 1492. Then it was a land of indigenous tribes. Hence, initially life was very difficult for the people coming and settling over there. As the number of adventurous and visionary people started coming to USA, the life started getting better. At some point of time, it started becoming an attraction for people looking for greater opportunities. So, people with skills to exploit the opportunities started moving to America. Due to the skilled people, there began a faster development and created more opportunities. Thus, as the number of skilled people entering USA increased, the value of the USA as a society increased. It can be given as,
New Skilled Person Entering USA = The Person Getting Opportunities Worth the Value Spent to Enter + More Opportunities + Better Lifestyle
The More Opportunities + Better Lifestyle will be the gain for all the Americans due to one person. We observe that one person entering USA increases the value of the society in USA.
Road Networks in City (More Vehicles on the Road): Assume there is a road network in a city which has no vehicles. When the first vehicle starts using it, it will have no problems like overtaking, honking, traffic jam, accidents, parking etc. But, as the number of vehicles using the same road network increases, the earlier drivers start feeling it more problematic. They will start facing all the problems mentioned above. Even the travel time increases. The cost of travel also increases due to slow driving. In other terms, whenever a new car joins the same road network, even though car owner gets the comfort of traveling a new car, he decreases the speed at which the traffic moves in the city (increases the the travel time). He also increases the cost of the travel due to the slow drive. We can represent it as,
New Vehicle Joining the City Traffic = Comfort Worth the Value of the Car to Owner +Slower Traffic + More Travel Cost
Slower Traffic + More Travel Cost is the reduction in the overall traffic system due to increase in the number of vehicles on the road.
From all the examples above, we can observe a very dominant behavior of the networks. When a new elements(person, car etc.,) is added to the network, the elements adds extra benefit or cost to all the other elements of the network. So, generically we can express this as,
New Element Joining the Network = Value Equal to Expenditure Made to Join Network + Some Benefit/Cost to all the Members of the Network
There are many such example around us which show this kind of behavior. The following are the
  • People forming villages.
  • People buying more Nokia phone in early 2000s.
  • People buying Hero Honda vehicles in mid 90s.
  • Internet.
  • Arrival of IT Companies in Bangalore.
  • Plantations.
  • Electricity Consumption.
  • Mobile Network Congestion.
In the examples seen, we have to observe that, when a new member enters a network, the network might get benefited in some aspects and might incur cost in some other aspects. So, whenever a new member joins the network, we have to look into all the aspects and take the aggregated value add to understand whether the network is getting benefited or incurring cost as a whole. If the aggregated value add is positive, network made benefitand when the aggregated value add is negative, network incurred cost.
If the network gets benefited , in aggregate, from the addition of new member, then there will be higher motivation for the people inside the network to welcome more people and also there will be higher motivation for new members to join. However, if there is absolute cost incurred by the network members and the new member when the new member joins the network, then there will be negative motivation for non members to joining the network.
2. Value of a Network
The aggregated value add is the way in which a network gets its overall value. When a new member enters the network, in case of existence of benefit, the value of the network increases and in case if the cost is incurred, the value of the network decreases. This growth of value of the network indicates a lot of future trends. Hence, many people have tried to quantify the value of the network in different aspects. The following are few interesting laws trying to quantify the value of the network.
a) Metcalfe’s Law
Robert Metcalfe is the co-inventor of Ethernet. He wanted to explain people why they should buy more and more Ethernet card. Hence, he proposed a law which asserted that the value of the Ethernet network is proportional to the square of the number of Ethernet cards connect in it. Hence, though the cost of adding new element to the network increases linearly, the value of the network due to the addition of new element increases quadratically.
The intuition for value of the network is derived from the possible number of connections in the network. If we consider a directed network with n nodes, then the maximum number of connection possible in that network is n(n-1) (if we do not consider the self loops). This is in the order of n2. Hence, it is looks intuitive that the value of the network increases quadratically. Figure 2 gives more insight about the claims of Metcalfe’s law (the image taken from wikipedia).
Example to explain the intuition behind the network value claims by Metcalfe’s law. The value of the network here is the "maximum number of connection possible". 
Example to explain the intuition behind the network value claims by Metcalfe’s law. The value of the network here is the “maximum number of connection possible”.
This makes network gain more value due to the addition new network element. This looks beneficial to grow the network because, for such a growth, there will always be an n, for which:
  1. The value of network becomes greater than cost, and
  2.   For any value greater than n, value of network increases faster than the cost incurred, and cost starts becoming negligible.
  3. The network starts increasing its value in almost quadratic terms.
The diagrammatic representation to show that the quadratic value will always cross the linear value for some value "n". Then the linear value starts becoming negligible. 
The diagrammatic representation to show that the quadratic value will always cross the linear value for some value “n”. Then the linear value starts becoming negligible.
The above figure shows this phenomenon in a graph. We can observe that once the number of elements in the network crosses  n, the value of the networks becomes positive (even if it is negative earlier due to the cost of adding new nodes). After this stage, as the network grows, the linearly growing overall cost starts becoming negligible compared to the quadratically growing value of the network.
The law was later formalized by George Gilder for all the networks in 1993. He claimed that this law is not only applicable to the device networks (like Ethernet), but is also applicable to networks with users in it (economic network, business network etc).
b) Reed’s 3rd Law
Metcalfe’s law became famous due to its intuitive quantification of the value of the network. In 2001, David P. Reed, an American computer scientist came up with a new law called Reed’s Law for quantifying the value of a network. He said that the Metcalfe’s law underestimates the value of the network. He claimed that the law is highly applicable for large scale networks like social networks (more on Reed’s law at:http://en.wikipedia.org/wiki/David_P._Reed , http://en.wikipedia.org/wiki/Reed’s_law ). The statement of Reed’s Law goes as follows:
As networks grow, value shifts: Content (whose value is proportional to size) yields to Transactions (whose value is proportional to the square of size), and eventually Affiliation (whose value is exponential in size)
In Reed’s law,
  • The meaning of the term content is the number of nodes.
  • The meaning of the term affiliation is the social and business relationship.
Reed’s law tells that when a network starts building, it will have value only because of its individual members, as there are not transactions between members and no affiliations too. But, later, the members of the network get into transactions. Because of the transactions, the value of the network becomes quadratic in nature(similar to Metcalfe’s Law). Due to the transactions, the members will come together and form different communities. The real value of the network becomes exponential due to formation of such of communities.
The intuitive proof of Reed’s Law goes like this. When members start transacting, in a nmember network, the maximum number of transaction each person can do is n-1. Hence, the total number of transactions in the network will be x (n-1), which is O(n2). Hence, Reed claims that the value of the network due to transactions is quadratic.
When the member start forming the communities, the maximum number of Group-Forming-Networks(GFC) people can form with other members is 2n – n – 1. A GFN is nothing but any community formed by the some members of the network. 2n is the cardinality of the power set of n members. We subtract n from with a naive assumption that there can not be single member communities. We subtract 1, as it represents the number of empty sets in the power set. 2n – n – 1 is in the order of O(2n). Hence, Reed claims that the value of the network due to the affiliations is exponential in nature.
c) Beckstrom’s Law
Beckstrom’s law was proposed by Rod Beckstrom in 2009. Beckstrom claims that this law can be used to evaluate any kind of network including electronic networks, social networks, supports networks and Internet. The laws states that:
The value of a network equals the net value added to each user’s transactions conducted through that network, summed over all users.
The Beckstrom’s law takes completely different look at the value getting added to the network. Instead of looking into structure and number of nodes as the input for calculating the value of the network, Beckstrom’s law looks at each transaction happening in the network (represented as an edge) as the input for calculating the value of the network. The law looks at the factor of “how valuable is the network for each user“. This is calculated by aggregating all the benefits a member gets due to the presence of the member in the network. This factor in aggregation over all the members is used to calculate the value of the complete network.
It is not that each transaction in the network adds value to the member. It is possible that due to presence of the network, the member might incur more cost. This cost is also taken care when the value of the transactions is calculated. Hence, if the member is incurring cost due to the presence of the network, the value of the network might reduce. This is a new way of looking at the value of network, which was not done by both Metcalfe’s law and Reed’s law.
To understand how value is derived from the network, let us look at an example. Assume that you wanted to buy an laptop. You visit the stores near by and understand that the minimum prize it is available for is Rs. 30000 and you decide to buy. Now, while browsing, you come across the same model of the laptop for Rs. 28000 on Flipkart. You also get to know that, they provide additional 3-years warranty free complimentary (which is worth Rs. 2000). Now, we know that by buy on-line, we will save Rs. 4000 in total. This is the value generated by us by the transaction. Similarly, the Flipkart will also gain in the transaction, say Rs.1000. Similarly, there might be many nodes in the network which will get value add. The value of the network will be the aggregate (sum) of all the gains.
Beckstrom’s law takes care of the temporal aspect of the network value. When a transaction adds value to the network, its value will not remain the same over time. As the time progresses, its values starts decaying. Hence, after some time, if there no transaction in the network then the network starts losing the value as time passes.
3. Review and Interpretation of Laws
Questioning the Validity of Metcalfe’s Law (Metcalfe’s Law is Wrong): There has been many criticism on the Metcalfe’s and Reed’s Laws. The first argument focuses on the the number of connections handled by each node in the network. The argument says that the Metcalfe’s and Reed’s Law can not be applied to quantify the value of networks involving people as the members. People have limit to the number of stable connections they can manage. Once the number of connections get saturated, the person can not get involved in any more connections. So, growth rate is not always quadratic and is restricted by the saturation of connection handling capability of people.
The other kind of argument talks about the nature of connection distribution in network. The claim is “the value of the network with  n member is of the order of n log(n)”. The basis for the claim lies in the assumption that the distribution of connections follows the Zipf’s law. Hence, the connection distribution for each member for all other members looks like 1, 11, … , 1n-1. It mean that if there is observation on the connection time of a member with other members, and if the maximum connection time is normalized to 1, then other connection times will look like 1, 1213, … , 1n-1So the value of the network contributed by one member is 1 + 12 + 1+ … + 1n-1.For infinitely big network this series converges to log(n). As there are n such member, the value of the network is n log(n).
Interpretations and Analysis of the Laws: As we saw these laws, and their criticisms, it was getting more and more evident that we are misunderstanding the laws in some conditions. We have intuitively understood that even though all these laws talk about the {value of the network}, the value is measured in different contexts for each of the laws. Hence, in this section, we will try to understand different context where these laws will be used and their different interpretations.
Interpretations of Metcalfe’s Law: Metcalfe’s law is used in the context, where we need to understand the value of the network in terms of number of connection. Here are some the observations.
  1. Metcalfe’s Law values the network in terms of the number of possible connections in the network. The number of possible connection is also an indication of number of possible transactions. Note that it is the upper bound of the network value. Hence, we should not misunderstand the the value of the network will always be at its maximum.
  2. Metcalfe’s Law is highly applicable to small network like LAN, where almost every machine is connected to every other machine. In such small networks, it may be possible that the maximum value is reached by such network.
  3. The law has the limitation when we try to apply this on network with people as the members. This is due to the saturation of the number of connections an individual member can handle. The law ignores the fact of probability of the connection between different members and hence ends up misleading for larger networks.
Interpretations of Reed’s Law: Reed’s law used in the context of understanding society value in the network. We interpret Reed’s law as below.
  1. Reed’s law talks about the value of the network being proportional to the exponent (2n) of the number of member. This means that, the value of the network found using the Reed’s law is the value in terms of the number of different groups that can be formed in the network.
  2.  The value of the network formed puts an upper bound on the actual value of the network. Even if the the value of the network may not be equal to the value proposed by Reed’s law, it can never cross it. Hence, Reed’s law defines the boundaries of the value of the network in its own context.
  3. The Reed’s law is applicable in the small networks which show the tendency of heterogeneous group formations. For example, in the a small apartment society, there will be different groups like sports club, music club, drama club, trekkers etc.,. There, the value of the network might be very near to the value proposed by Reed’s law. But, when the network size increases, then value of the network will not grow exponentially. The law ignores the fact of probability of the connection between different members and hence ends up missing this point.
Interpretations of Beckstrom’s Law: Beckstrom’s Law talks about the value of a network due to the transactions in the network.
  1.  The law rightly identifies the transactions between the members as the potential contributors to the network value.
  2. The law has a provision for network value to decay due to the increased cost in transactions. This makes sure that many other factors causing negative effect on the value of the networks are also considered.
  3.   The decay of the generated value over time tells that value of the network is temporal in nature. This is a new way of looking at the value of a network. Due to the temporal nature, the value of network starts decreasing when the number of transactions in the network stop. There will be threshold value of transaction value. If this transactions do not generate this threshold value, then the value of the network starts decreasing.
  4. This can not capture the value added only by the presence of a member in the network. For example, presence of a film start in a commercial good network might bring many other fans to the network. These fans may in turn add value to the network. But, the law does not work in that context.
We have to understand the contexts of the applicability of the laws to understand them better. Like Moor’s law, these laws are not immutable laws as well. They are laws which indicate tendencies but are not strict in nature.
4. Conclusion
It has been observed that many networks increase or decrease in their value due to the addition of new members. This phenomena can in turn be the reason for the growth or decay of a network. Due to this kind of importance, there have been many attempts to quantify the value of a network by many people. Metcalfe, Reed and Beckstrom came up with own laws to quantify the value of a network. They looked into different aspects of the networks and tried to quantify the value of the networks in those contexts. But, it has always been misunderstood that all of them proposed the value of for a network in the same context. Metcalfe and Reed have ignored some important factors like saturation of limit of connections for individual human beings while proposing the laws. These has become a reason for lot of controversies and criticisms. But, when we keep the contexts in the view, then these laws give us lot of important properties.
REFERENCES
  1. Hendlera, J and Golbeck, J. Metcalfe’s Law, Web 2.0, and the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web.
  2. Reed, D.P. The Law of the Pack. Harvard Business Review. 2001
  3. Odlyzko, A. and Tilly, B. A refutation of Metcalfe’s Law and a better estimate for the value of networks and network interconnections. Manuscript, March. 2005
  4. Briscoe, B. Odlyzko, A. and Tilly, Metcalfe’s Law is Wrong. IEEE Spectrum. July 2006
  5. Beckstrom, R. A New Model for Network Valuation. 2009

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Best Hostgator Coupon Code